

58

Expressive AI: A Semiotic Analysis of Machinic
Affordances

Michael Mateas
Georgia Institute of Technology

Literature, Communication and Culture & The College of Computing
686 Cherry Street

Atlanta GA 30032-0615

michael.mateas@lcc.gatech.edu

ABSTRACT
Expressive AI is a hybrid practice, combining artificial
intelligence (AI) research and art making, that simultaneously
focuses on the negotiation of meaning mediated by an art object
and the internal structure of AI systems. These two apparently
disparate views are unified through the concept of affordance:
negotiation of meaning is conditioned by interpretive affordances
while the internal structure of the AI system is conditioned by
authorial affordances. This paper employs a structuralist semiotic
analysis to unpack the notion of interpretive and authorial
affordance, exploring the deep relationships between AI code
structures, authorial intentionality, and culturally negotiated
meaning.

Keywords
Artificial intelligence, semiotics, art

1. Introduction
Art and artificial intelligence (AI) research appear to be quite
different practices. Where art practice focuses on the negotiation
of meaning as mediated by the art object, AI research focuses on
internal system structure and the interaction between system and
environment. My work in AI-based art and entertainment
simultaneously engages in AI research and art making, a research
agenda and art practice I call Expressive AI [10, 11].

Expressive AI has two major, interrelated thrusts: (1) exploring
the expressive possibilities of AI architectures – posing and
answering AI research questions that wouldn’t be raised unless
doing AI research in the context of art practice, and (2) pushing
the boundaries of the conceivable and possible in art – creating
artwork that would be impossible to conceive of or build unless
making art in the context of an AI research practice.

Expressive AI is thus a hybrid practice simultaneously focusing
on the negotiation of meaning and the internal structure of AI
systems. These two apparently disparate views are unified
through the concept of affordance: negotiation of meaning is
conditioned by interpretive affordances while the internal
structure of the AI system is conditioned by authorial

affordances. In [11] I described how a focus on authorial
expression changes the AI research agenda, positioned
Expressive AI relative to both symbolic and embodied AI, and
introduced the idea of interpretive and authorial affordance. This
paper employs a structuralist semiotic analysis to unpack the
notion of interpretive and authorial affordance, exploring the
deep relationships between AI code structures, authorial
intentionality, and culturally negotiated meaning.

2. Example Systems
This section provides brief descriptions of three AI-based
artworks. These systems are used as examples throughout the
rest of the paper.

2.1 Office Plant #1
Walk into a typical, high tech office environment, and, among the
snaking network wires, glowing monitors, and clicking
keyboards, you are likely to see a plant. In this cyborg
environment, the silent presence of the plant fills an emotional
niche. Unfortunately, this plant is often dying; it is not adapted to
the fluorescent lighting, lack of water, and climate controlled air
of the office. Office Plant #1 [5] is an exploration of a
technological object, adapted to the office ecology, that fills the
same social and emotional niche as a plant. Office Plant #1
employs text classification techniques to monitor its owner's
email activity. Its robotic body, reminiscent of a plant in form,
responds in slow, rhythmic movements to express a mood
generated by the monitored activity. In addition, low, quiet,
ambient sound is generated; the combination of slow movement
and ambient sound thus produces a sense of presence, responsive
to the changing activity of the office environment.

Figure 1. Office Plant #1.

First published at COSIGN-2003,
09 – 12 September 2003, University of Teesside (UK),
School of Computing and Mathematics, Virtual Environments
Group

59

Office Plant #1 classifies incoming email into social and
emotional categories using AI statistical text classification
techniques. Given the categories detected by the email
classifiers, a Fuzzy Cognitive Map (FCM) determines which
behavior the plant should perform. The FCM is a neural
network-like structure in which nodes, corresponding to
behaviors, are connected to each other by negative and positive
feedback loops.

2.2 Terminal Time
Terminal Time [14] is a story generation system that constructs
ideologically-biased documentary histories, consisting of spoken
narrative, video sequence and sound track, in response to
audience feedback measured by an applause meter. One of the
goals of Terminal Time is to build a caricature model of the
documentary film production process. Rather than “objectively”
reporting a sequence of events through the eye of a camera (the
implied production process in documentary film), events are
instead selected and biased so as to satisfy an ideological
position, assembled into a desired narrative, and only then is
video footage selected to illustrate the constructed narrative. As a
large-audience interactive artwork, Terminal Time allows an
audience to explore the role of ideological bias in the
construction of history. As an AI research system, Terminal Time
integrates a novel model of ideologically-biased reasoning within
a story-generation framework.

The architecture makes use of several representations and
knowledge sources including: a knowledge base of historical
events represented in an ontology based on the Upper Cyc
Ontology, ideologue-specific representations of rhetorical goals
that select and “spin” events, rhetorical devices that can be used
to “glue” spins together to form historical narratives, a plan-
based natural language generator, and a database of term-indexed
video clips.

2.3 Façade
Façade is an artificial intelligence-based art/research experiment
in electronic narrative – an attempt to move beyond traditional
branching or hyper-linked narrative to create a fully-realized,
one-act interactive drama [12, 13]. Façade incorporates the
player’s interaction with autonomous characters into a well-
shaped dramatic arc with a clear inciting incident, progressive
complication leading to a climax, and closure. In Façade, you,
the player, play the character of a longtime friend of Grace and
Trip, an attractive and materially successful couple in their early
thirties. During an evening get-together at their apartment that
quickly turns ugly, you become entangled in the high-conflict
dissolution of Grace and Trip’s marriage.

Architecturally, Façade consists of a number of components.
ABL (A Behavior Language) is a novel reactive planning
language for authoring believable agents. ABL provides language
support for authoring coordinated, multi-character dramatic
action. The drama manager operationalizes dramatic beats. In
dramatic writing, a beat is the smallest unit of dramatic value
change, where dramatic values are properties of individuals or
relationships such as trust, love, hope, etc. In Façade beats are
architectural entities, consisting of preconditions, a description of
the values changed by the beat, success and failure conditions,
and joint behaviors (written in ABL) that coordinate the

characters in order to carry out the specific beat. The drama
manager attempts to sequence beats so as to incorporate player
interaction while making specific dramatic arcs (value change
graphs) happen. The natural language processing system employs
semantic parsing to map dialog typed by the player into discourse
acts (e.g. agree, disagree) and interprets the resulting discourse
acts as a function of the current discourse context (most often
defined by the currently active beat). Finally, a custom non-
photorealistic animation engine presents the story world as a
real-time, 3D space through which the player can move, gesture,
interact with objects, and talk with characters (dialog input is
accomplished through typing).

3. Affordances
The notion of affordance was first suggested by Gibson [8] in his
theory of perception and was later re-articulated by Norman [17]
in the field of interface design. For Gibson, affordances are
objective, actionable properties of objects in the world. For an
animal to make use of the affordance, it must of course perceive
it in some way, but for Gibson, the affordance is there whether
the animal perceives it or not; an unperceived affordance is
waiting to be discovered. For Norman, affordances become
perceived and culturally dependent. That is, rather than viewing
the relationship between sensory object and action as an
independent property of the object+animal system, this
relationship is contingent, dependent on the experiences of the
perceiver within some cultural framework. For example, for a
person who has spent the last 10 years using the web, blue
underlined text now affords an action, clicking with a pointing
device, with the expectation that this clicking will “follow a
link” to another information node. If blue underlined text is used
in a different interface merely as a way to emphasize text, this is
likely to generate confusion because the hypothetical interface is
violating an affordance. It is this second notion of contingent
affordance that I use here. But note that though affordances are
contingent, they are not arbitrary – affordances are conditioned
by the details of human physiology (what we can sense, how our
bodies move), by cultural memory, and by the perceivable
physical properties of objects. While new affordances can come
into existence, as illustrated by the link-following affordance of
blue underlined text, these innovations are conditioned by earlier
affordances (e.g. the physical affordances of computer mice) and
take active cultural work to establish.

3.1 Interpretive Affordance
Interpretive affordances support the interpretations an audience
makes about the operations of an AI system, conditioning the
meanings negotiated between artist and audience. Interpretive
affordances provide resources both for narrating the operation of
the system, and additionally, in the case of an interactive system,
for supporting intentions for action.

For AI-based art, narrative affordances support the audience in
creating a story about the operation of the piece and how this
operation relates to the artist’s intention. For example, imagine
having Office Plant #1 on your desk. The name, plus the physical
form, prepares one to view the sculpture as a plant – it has
identifiable parts that metaphorically relate to the stem, flower,
and leafs of biological plants. The wooden box of the base,
hammered finish of the flower, and whimsical piano-wire fronds

60

topped with crinkled, copper-foil-wrapped spheres, give the plant
a non-designerly, hand-built look that communicates that it is
neither a consumer electronic toy nor serves any functional
purpose. Yet it is clearly a machine – it hums quietly while
operating, moves very slowly (the motion is visible only if you
watch patiently), and, when returning to the desk after an
absence, is sometimes in a different configuration than it was left
in. The plant starts moving when email is received; over time one
can notice a correlation between the plant’s physical poses and
the email received. All of the perceived features of the plant, the
materials used and the details of fabrication, the physical form,
the temporal behavior, the relationship between this behavior
and email, constitute the narrative affordances, the “hooks” that
the plant’s owner uses to make sense of the plant, to understand
the plant in relationship to themselves and their daily activity.

For interactive art, intentional affordances support the goals an
audience can form with respect to the artwork. The audience
should be able to take an action and understand how the artwork
is responding to this action. This doesn’t mean that the artwork
must provide simple one-to-one responses to the audience’s
actions. Such simple one-to-one responses would be
uninteresting; rather, the poetics of the piece will most likely
avoid commonly used tropes while exploring ambiguities,
surprise, and mystery. But the audience should be able to
understand that the system is responding to them, even if the
response is unexpected or ambiguous. The audience should be
able to tell some kind of unfolding story about their interaction
with the work. Both the extremes of simple stereotyped
responses to audience interaction making use of well-known
tropes, and opaque incoherence with no determinable
relationship between interaction and the response of the art
work, should be avoided.

A concern with interpretive affordances is often alien to AI
research practice. Though the role of interpretation is sometimes
discussed (e.g. the Turing test is fundamentally about
interpretation [20], Newell’s knowledge level is an attribution
made from outside an AI system [15]), most often AI systems are
discussed in terms of intrinsic properties. But for artists, a
concern with interpretive affordance is quite familiar; negotiating
meaning between artist and audience is central to artistic
practice. Expressive AI adopts this concern within the context of
AI-based art. But Expressive AI also adopts a concern for the
internal functioning of the artifact from AI research practice.

3.2 Authorial Affordance
The authorial affordances of an AI architecture are the “hooks”
that an architecture provides for an artist to inscribe their
authorial intention in the machine. Different AI architectures
provide different relationships between authorial control and the
combinatorial possibilities offered by computation. Expressive AI
engages in a sustained inquiry into these authorial affordances,
crafting specific architectures that afford appropriate authorial
control for specific artworks.

This concern with the machine itself will be familiar to AI
research practitioners. However, AI research practice often
downplays the role of human authorship, focusing on the
properties of the architecture itself independent of any “content”
authored within the architecture. Multiple architectures are most

often compared in a content-free manner, comparing them along
dimensions and constraints established by theories of mind, or
theories of brain function (not necessarily at the lowest, neuron
level), or comparing their performance on established benchmark
problems. For Expressive AI, the concern is with how the
internal structure of the machine mediates between authorship
and the runtime performance.

A focus on the internals of the machine itself is often alien to
current electronic media practice; the internal structure of the
machine is generally marginalized. The machine itself is
considered a hack, an accidental byproduct of the artist’s
engagement with the concept of the piece.

One might generalize in this way (with apologies to both
groups): artists will kluge together any kind of mess of
technology behind the scenes because the coherence of the
experience of the user is their first priority. Scientists wish
for formal elegance at an abstract level and do not
emphasize, or do not have the training to be conscious of
inconsistencies in, the representational schemes of the
interface. [18]

In discussions of electronic media work, the internal structure of
the machine is almost systematically effaced. When the structure
is discussed, it is usually described at only the highest-level,
using hype-ridden terminology and wishful component naming
(e.g. “meaning generator”, “emotion detector”). At its best, such
discursive practice is a spoof of similar practice within AI
research, and may also provide part of the context within which
the artist wishes her work to be interpreted. At its worst, such
practice is a form of obfuscation, perhaps masking a gap between
intention and accomplishment, the fact that the machine does not
actually do what is indicated in the concept of the piece.

Yet it is nonetheless the case that an artist’s concern with the
coherence of the audience experience, with the crafting of
interpretive affordances, is entirely appropriate – creating an
audience experience is one of the primary reasons the artwork is
being made in the first place. So why should an artist concern
herself with authorial affordances, with the structural properties
of the machine itself? Because such a concern allows an artist to
explore expressive possibilities that can only be opened by a
simultaneous inquiry into interpretive affordance and the
structural possibilities of the machine. Interpretive and authorial
affordances are coupled – a concern with the machine enables
audience experiences that aren’t achievable otherwise.

3.3 Combining Interpretive and Architectural
Concerns
The splitting of AI-based art practice into interpretive and
authorial concerns is for heuristic purposes only, as a way to
understand how Expressive AI adopts concerns from both art
practice and AI research practice. Expressive AI practice
combines these two concerns into a dialectically related whole;
the concerns mutually inform each other. The “interface” is not
separated from the “architecture”. In a process of total design, a
tight relationship is maintained between the sensory experience
of the audience and the architecture of the system. The
architecture is crafted in such a way as to enable just those
authorial affordances that allow the artist to manipulate the
interpretive affordances dictated by the concept of the piece. At

61

the same time, the architectural explorations suggest new ways to
manipulate the interpretive affordances, thus suggesting new
conceptual opportunities. Thus both the artist’s engagement with
the inner workings of the architecture and the audience’s
experience with the finished artwork are central, interrelated
concerns for Expressive AI.

The AI-based artist should avoid architectural elaborations that
are not visible to the audience. However, this admonition should
not be read too narrowly. The architecture itself may be part of
the concept of the piece, part of the larger interpretive context of
people theorizing about the piece. For example, one can imagine
building a machine like Terminal Time in which some small
collection of historical narratives have been prewritten. The
narrative played is determined by a hard-coded selection
mechanism keyed off the audience polls. For any one audience,
the sensory experience of this piece would be indistinguishable
from Terminal Time. However, at a conceptual level, this piece
would be much weaker than Terminal Time. A Terminal Time
audience is manipulating a procedural process that is a
caricature of ideological bias and of institutionalized
documentary filmmaking. The operationalization of ideology is
critical to the concept of the piece, both for audiences and for
artists and critics who wish to theorize the piece.

4. The Code Machine and the Rhetorical
Machine
AI (and its sister discipline Artificial Life), consists of both
technical strategies for the design and implementation of
computational systems, and a pared, inseparable, tightly
entangled collection of rhetorical and narrative strategies for
talking about and thus understanding these computational
systems as intelligent, and/or alive.

These rhetorical strategies enable researchers to use language
such as “goal”, “plan”, “decision”, “knowledge”, to
simultaneously refer to specific computational entities (pieces of
program text, data items, algorithms) and make use of the
systems of meaning these words have when applied to human
beings. This double use of language embeds technological
systems in broader systems of meaning.

Figure 2. Total system = code machine + rhetorical machine

There is an uncomfortable relationship between a purely
relational (and thus literally meaningless) technical manipulation
of computational material, and the interpretation of this
computational material by a human observer. Simon and Newell
posited the physical symbol system hypothesis as a fundamental
assumption of AI [16]. This hypothesis states that a physical
system consisting of a material base that can take on various
configurations (call these configurations “symbols”) and a

material process that manipulates these physical constellations to
yield new constellations is sufficient for the production of
intelligent behavior. This formulation immediately produces an
interpretation problem in which an external observer is necessary
in order to view the material constellations as signs in such a
manner that intelligence can be observed in the material
production of sign from sign. Interpretation, with all of its
productive open-endedness, is thus crucial to the definition of
intelligent system, but is usually pushed to the background of AI
practice.

The necessity of rhetorical strategies of interpretation is not
avoided by “subsymbolic” techniques such as neural networks or
genetic algorithms utilizing numeric genomes (i.e. not the tree-
shaped, symbolic genomes of genetic programming), nor by
machine learning methods based on generalization from training
data, nor by behaviorist robotic techniques that link sensors to
effectors through stateless combinational circuitry or finite state
machines. These approaches still require the interpretation of an
observer in order to make sense of the input/output relationships
exhibited by the system, to select the primitive categories
(features) with which the inputs are structured, and to tell stories
about the processes producing the input/output relationships.
These stories are essential for thinking through which technical
constructions to try next, that is, for simultaneously defining a
notion of progress and a collection of incremental technical
constructions that make progress according to this notion.

The rhetorical strategies used to narrate the operation of an AI
system varies depending on the technical approach, precisely
because these interpretative strategies are inextricably part of the
approach. Every system is doubled, consisting of both a
computational and rhetorical machine (see figure 2). Doubled
machines can be understood as the interaction of (at least) two
sign systems, the sign system of the code, and a sign system used
to interpret and talk about the code.

The central problem of AI is often cast as the “knowledge
representation” problem. This is precisely the problem of
defining structures and processes that are simultaneously
amenable to the uninterpreted manipulations of computational
systems and to serving as signs for human subjects. This quest
has driven AI to be the most promiscuous field of computer
science, engaging in unexpected and ingenious couplings with
numerous fields including psychology, anthropology, linguistics,
physics, biology (both molecular and macro), ethnography,
ethology, mathematics, logic, etc. This rich history of
simultaneous computational and interpretive practice serves as a
conceptual resource for the AI-based artist.

The relationship between the sign system of the code (the code
machine) and the sign system used to talk about the code (the
rhetorical machine) can be explicated via a semiological analysis.
By semiology, I mean the semiotic tradition following Saussure’s
General Linguistics [19], and explicated by thinkers such as [9,
4]. The treatment in this paper most closely follows Barthes [3,
4].

4.1 The Code System
The program code, considered as a sign system, relates two
planes: a plane of expression containing the space of all possible
pieces of program text (the marks on a screen or page), and a

Physical processes

Uninterpreted
computation

Complex causal
flows

Discursive strategies

Interpreted
computation

Definitions of
progress

62

plane of content containing the space of all potential executions.
That is, a piece of program code is a signifier signifying (the
mental concept of) the effect of executing this code. For example,
the signified of the simple sign (code fragment) x = 1 is, for
programmers used to working in imperative languages, probably
something like placing a 1 within a box labeled x.

Note that code signs, as is the case with any sign, provide no
privileged access to an unmediated reality. The signified is the
mental concept of an execution, not the execution itself. The
relationship between the mental concept of an execution and the
physical effect of executing a piece of code on a concrete
computer (e.g. for contemporary digital computers, changing
voltage levels in pieces of silicon) falls outside of the purview of
structuralist semiotics. A code fragment is a sign-function,
having both a utilitarian, technical use (the physical effect of
executing the code on a concrete machine), while serving as a
sign for its potential execution. Obviously there are constraints
imposed on sign value by use value; for example, the physicality
of a rubber ball, and the technical functions (e.g. bouncing) that
the physicality of a rubber ball supports, prevents (or at least
makes quite difficult) the rubber ball from taking on the sign
value of a tasty snack. Similarly, the possible sign values of a
code fragment are constrained by the use value, the physical
effect of its execution on concrete machinery. Though a
structuralist semiotic analysis has its limits, such as difficulty in
offering a detailed analysis of the relationships between sign and
use value, it remains the case that much of human activity is
structured by language-like interactions, from which a semiotic
analysis gains its traction. In the specific case of the activity of
programming, programmers think about potential executions and
read and write texts to express those potential executions; this
language-like activity suggests that the semiotic view of program
code as a sign system, while not explaining everything about the
human activity of programming, is likely to yield dividends.

To further unpack the idea of code as a semiotic system, consider
the example of rhetorical goals in Terminal Time. The textual
representation, the code, for a specific rhetorical goal appears in
Figure 3.

Figure 3. The code representation of a rhetorical goal.

This complex sign is itself a syntagm, composed of a
constellation of signs. But considering the complex sign as a
unity, the rhetorical goal signifies potential executions in which
the system will tend to include a certain class of historical events
in the constructed documentary, in this case, events in which
governmental research organizations engage in scientific or
technical research, in such a way as to make a certain point, in
this case, that it is beneficial when science and government come
together. It is interesting, perhaps surprising, that this relatively
small textual signifier signifies potential executions that relate so

directly to Terminal Time’s output; watching a generated
documentary (in which this goal is active) with this code sign in
hand, it is possible to relate the appearance of specific historical
events in the documentary (such as a breathless, glowing
description of the moon landing or the invention of the atomic
bomb) to this code sign, that is, to the effect on execution of this
textual signifier. It is certainly not a given that a system of code
signs would necessarily provide form to the plane of textual
representations (expression) and the plane of potential
executions (content) in this way. It takes work to articulate the
planes in this particular way – this work is in fact the creation of
a custom code system.

Standard languages, such as C++, lisp, or Java, define code
systems, specific ways of chopping up the spaces of textual
representations and potential executions. Like many sign-
function systems, the more radical innovation of the creation of
the sign system lies with special individuals or organizations who
define the language, with consumers of the language limited to
working with the signs, the associations between text and
execution, established by the language. But it is standard practice
in computer science, enabled by Turing equivalence, to use a pre-
given code system (language) to implement new code systems
that provide different associations between text and execution.
This practice allows individuals to engage in the more radical
innovation of creating new code systems particularly suited for a
specific task. Mainstream languages, such as the three mentioned
above, tend to be strongly procedural; the control structure,
which determines the temporal relationship between bits of
execution, is explicitly captured in the textual representation.
However, this is not the only kind of code system. One can
define purely declarative code systems, such as the rhetorical
goal above. In declarative systems, the textual representation
does not explicitly capture temporal relations in execution.
Rather, the code signs indicate execution propensities. The
system as a whole will tend to behave in certain ways if the
declarative sign is part of the system, though the precise
execution path (temporal sequence of sign execution) is
unknown. Or the custom language may be a hybrid, such as ABL,
which combines the declarative features of production systems
with the procedural features of more mainstream languages.

The architecture is the conglomeration of code that implements a
custom language, that is, establishes the relationship between
bits of textual representation and potential executions. For
example, in Terminal Time a rhetorical goal becomes a sign by
virtue of its role within the entire architecture. The rhetorical
goal has relationships with or participates in many parts of the
architecture, including the knowledge base, the story board
(where narrative construction takes place), natural language
generation, the selection of music, and (indirectly, through the
goal’s effect on the natural language generator) the sequencing of
video clips. This little bit of text gains its meaning through its
effect on a broad array of processes throughout the architecture.

At this point it is possible to provide a semiotic account of the
code system properties that yield interpretive and authorial
affordances.

(def-rhetgoal
 :name :give-positive-example-of-big-science
 :app-test
 (%and
 ($isa ?event %SciTechInnovationEvent)
 ($performedBy ?event ?bigsci)
 ($isa ?bigsci $LegalGovernmentOrganization)
 ($isa ?bigsci $ResearchOrganization))
 :rhet-plans (:describe-event)
 :emotional-tone :happy)

63

4.1.1 Affordance in the Code System
An AI-based artwork is a semiotic system productive of a
(potentially large) number of syntagms. AI-based artworks are
thus generative; computational processes provide the
combinatoric machinery necessary to select terms out of the
fields of potential terms (associative fields) provided by the
system. The system produces variable syntagms in different
situations. For example, Office Plant #1’s behavior over time
depends on the email received by its owner, the content of
documentaries generated by Terminal Time depends on audience
answers to the psycho-graphic polling questions, and Trip and
Grace’s moment-by-moment behavior in Façade, as well as the
more global story structure, depend on the player’s real-time
interaction and patterns of interaction over time.

The internal structure of the machine, the program code, wires,
circuits and motors out of which a work might be constructed, is
itself a syntagm of the semiotic system defined by the
architecture (see Figure 4). The architecture consists of the
custom code systems, processes, modules, and relationships
between modules, which together define the implementation
language, the sign system within which the work will be
constructed. Building an AI-based artwork thus means
constructing a semiotic system of implementation (an
architecture, system1) such that it supports the construction of a
syntagm (the specific work built within the architecture,
syntagm1), which, when executed, becomes a semiotic system
(system2) autonomously productive of its own syntagms
(syntagm2) in different situations. System1 (the architecture) has
appropriate authorial affordances when there is a “natural”
relationship between changes to the syntagm1 and changes in the
syntagmatic productivity of system2. By “natural” is meant that it
is easy to explore the space of syntagmatic productivity
consistent with the artistic intention of the piece.

Figure 4. Relationships in the code system.

For example, in Terminal Time, the AI architecture is system1.
Syntagm1 is the collection of historical events (collections of
higher-order predicate calculus statements), rhetorical goals,
rhetorical devices, natural language generation rules, rhetorical
plans, and annotated video and audio clips, which collectively

make up the specific artwork that is Terminal Time1. Individual
signs within syntagm1, as well as syntagm1 as a whole, are signs
(have meaning) by virtue of their participation within system1.
The execution of syntagm1 results in system2, in a runtime
instance of Terminal Time. And, as the audience interacts with
system2, it produces syntagm2, a particular documentary out of
the space of all possible documentaries expressible within
(producible by) system2. While the structure of syntagm2 is quite
literally determined by system2, for the audience, the meanings
expressed by syntagm2 are determined by a meshwork of
different sign systems, including the system of documentary
imagery, the system of cinematic music, the linguistic system for
English (the voiceover), and a folk psychology of the execution of
system2 (e.g. “we voted that religion is a problem in the world,
and now it’s trying to make the point that religion is bad”). Thus
syntagm2 is multi-articulated; its meaning is determined not just
by system2, but also by a number of sign systems outside the
technical system2.

System1 is a meta-language for talking about system2; utterances
in system1 (syntagm1 or fragments) talk about potential
utterances of system2 (syntagm2 or fragments) (see Figure 4). For
Terminal Time, system1 utterances, such as the rhetorical goal in
Figure 3, are a way of talking about potential system2 utterances,
such as a breathless, glowing description of the invention of the
atomic bomb. System1 offers effective authorial affordances
when one and the same syntagm1 simultaneously talks about
desired syntagms2 (or fragments), and, when executed,
implements the appropriate system2 that indeed produces the
desired syntagms2. This property is not trivial – there are a
number of ways in which it can fail to hold.

It can be the case that system1 fails to provide appropriate signs
for talking about desired properties of syntagm2. For example, an
early version of Terminal Time’s architecture represented
historical events directly at the natural language generation and
video clip sequencing level. There was a fairly direct connection
between answers to the audience polls and the generation of
specific text about specific events. Given this system1, it was
impossible to express general relationships between poll answers
and categories of events. For example, if the winning answer to
the question “What is the biggest problem in the world today” is
“It’s getting harder to earn a living and support a family”, the
desired syntagm2 should include events demonstrating the evils
of capitalism. Given a relatively direct connection between poll
answers and natural language generation, there just was no way
of expressing this more general desired property of syntagm2, and
thus certainly no way of implementing the appropriate system2
with syntagm1.

It can be the case that syntagm1 utterances purport to talk about
desired syntagms2, but in fact, when executed, don’t implement a
system2 that produces the desired syntagm2. For example, in
Office Plant #1, statistical text classifiers map incoming email
into social and emotional categories. The categories appearing in
an email stream then condition the physical behavior of the

1 Since signs may be added or changed over time, such as the

modification or addition of rhetorical devices or historical
events, Terminal Time as a specific piece changes over time.

 system1 = architecture

syntagm1 = code signs

syntagm2 = audience signs

system2 = executing system

syntagm1 implements system2 code signifier potential
execution

audience sign

code signifiers simultaneously
signify potential execution and
audience signs

meta-language

object language

64

device. However, if the email categories are being
inappropriately assigned to individual emails, then the decision
making process that uses the assigned categories to decide which
physical behaviors to perform will make inappropriate decisions.
That is, the author will think that they’re specifying a system2
that reacts in a specific way to, for example, an apology email,
when in fact the internal label apology (a sign in syntagm1) does
not properly correspond with the intuitive notion of an apology.
Thus the statistical text classifiers must be trained in such a way
that the labels (categories) produced by the classifiers have an
appropriate correspondence with email messages.

As a final example of the failure of authorial affordance, it can be
that case that syntagm1 is successful in simultaneously describing
a desired syntagm2 and implementing an appropriate system2, but
that, when the audience (who may in fact be the same as the
author) actually experiences the produced syntagm2, its
interpretation is different than expected. This situation arises
precisely because syntagm2 doesn’t participate in just the
technical system2, but in a meshwork of sign systems outside of
the technical system. That is, part (perhaps a large part) of the
meaning of syntagm2 is opaque to the technical system, but rather
comes along for the ride as the technical system manipulates and
produces signs. For example, in Façade, a beat, and the
associated beat behaviors, may purport to serve the dramatic
function of communicating that when Trip asked Grace to marry
him she wasn’t really ready, while simultaneously
communicating that they are both getting more upset and that
Grace currently feels disaffiliated with the player. The associated
beat code may simultaneously describe the author’s vision of the
desired run-time experience, and, when executed, implement the
author’s vision of the desired runtime experience. But when the
author, or another player, plays the experience, Trip and Grace
actually seem less upset than in the preceding beat, even though
they are supposed to be more upset. What happened here is that
the details of the writing, and how the details of their physical
performance actually read, are extra-architectural; they lie
outside the literal code of the system. Even though the beat is
“performing to spec”, other sign systems are subverting its
interpretation. Every AI system is doubled. A description of the
code system is not enough – we need to examine the rhetorical
system.

4.2 The Rhetorical System
The signs of both system1 and system2 are multi-articulated; their
meaning arises both from syntagmatic and paradigmatic
constraints established by the respective code systems, but also
from a collection of sign systems outside of the code systems.
This collection of external code systems is the rhetorical system.
Both authors and audiences make use of the rhetorical system in
narrating the operation of the system and forming intentions with
respect to the system. The code and rhetorical systems are tightly
entangled; both play a role in understanding interpretive and
authorial affordances.

4.2.1 (Audience) Interpretive Surplus
Syntagm1 never completely describes all the properties of
syntagm2; though system2 literally prescribes the possible
elements (paradigm) and spatial and temporal relationships
between elements (syntagm) of syntagm2, a portion (perhaps a

large portion) of the signification is determined by external sign
systems. This interpretive surplus occurs because system2
operationalizes a meta-language (syntagm1) for describing the
audience experience (syntagm2). The signifieds of this meta-
language are themselves signs, participating in external sign
systems, which are handled by the meta-language.

The crafting of these external, handled signs, becomes an
irreducible problem in design and aesthetics. These handled
signs must be crafted to marshal the signifying resources of these
external sign systems in such a way as to match the purported
meanings of the code system. For example, in Façade, we as
authors have to write dialog that consistently communicates the
character of Grace and Trip, while communicating meanings
appropriate for a specific beat goal within a specific beat, while
also being re-sequenceable to various degrees. Specific lines of
dialog must meet multiple constraints established by how the
code machine will make use of the line. Additional meaning is
carried by how a voice actor performs the line. The nuances of
emotional tone, irony, sarcasm, desperation, etc., communicated
by the voice performance, must also be consistent with these
constraints. In authoring Façade, there is a reciprocal process
between authoring these handled signs (e.g. dialog, snippets of
animation data) and code-level authoring within the architecture.
Consistency between handled signs and manipulation by the code
machine is established by moving back and forth in the authoring
of these two domains. But consistency is not the same as identity;
there are always aspects of audience interpretation that escape
the code machine.

Another avenue for interpretive surplus is connotation; the
handled signs may become the plane of denotation for a
connotative system. For example, in Terminal Time, the
ideological arguments made by the system are often (purposely)
undermined through irony. The details of imagery, music, and
the narrative track connote irony, while at the level of denotation
an earnest argument is being made. For example, if the anti-
religious rationalist ideologue has been activated, a 20th century
event it may make use of is the Chinese invasion of Tibet.
Within the knowledge base, the two actors of this event are
Tibetan Buddhists (which the system infers are a kind of
Religious Group), and Maoists (which the system infers are a
kind of Rationalist through their connection to Marxism).
Furthermore, the event is a War, instigated by the Maoists
(Rationalists) against the Buddhists (Religious Group), in
which the Maoists are successful. This is enough for the Anti-
Religious Rationalist to decide it can use this event as a Positive
Example of Rationalist Progress. Assuming that this event
spin (the ideologically-slanted representation of the “objective”
representation in the knowledge base) makes it into the final
generated documentary, the system will earnestly argue that this
is a positive example of Rationalists mopping up the remaining
dregs of irrational religion (e.g. “There were reports that
Buddhists monks and nuns were tortured, maimed and executed.
Unfortunately such actions can be necessary when battling the
forces of religious intolerance.”) over a montage of Tibetan
Buddhist imagery and Chinese soldiers holding monks at
gunpoint, while playing the happy, “optimistic” music loop. The
system does not “know” that it is undermining its argument
through irony; irony is not a property described within the code

65

machine. We as system authors marshaled the handled signs
(language, video clips, music) to connote irony on top of the
structure explicitly provided by the code machine.

Given that the audience interpretation of syntagm2 always
escapes full specification by the code machine, it may be
tempting to conclude that computer-based art practice should
primarily make use of the signifying resources of external sign
systems via handled signs. Crafting the handled signs, animation
snippets, imagery, video clips, music loops, and so forth, falls
comfortably in the realm of more traditional art practice. Such an
approach would move back towards the “code as a hack” model,
throwing together the minimum code machine necessary to
coarsely manipulate handled signs. But this approach would
severely compromise the intentional affordances. As the
interpretive surplus becomes larger and larger, with more of the
interpretive affordance pushed onto the handled signs, an
imbalance grows between the intentional affordances offered by
the system and the system’s ability to actually respond to these
intentions. The rich handled signs suggest many avenues of
action to the audience. But with no corresponding richness in the
code machine, there is no way for the work to respond to these
actions; the rich, coarsely handled signs suggest a richness of
response that the work can’t satisfy. But the reason for designing
a rich and expressive architecture goes beyond the “utilitarian”
goal of supporting audience agency. The architecture (system1),
and systems designed within it (syntagm1), are themselves
embedded in a meshwork of external sign systems, providing the
AI-based artist with a rich architectural surplus.

4.2.2 Architectural Surplus
Agre [2] describes how AI technical practice provides narrative
affordances that support AI researchers in creating stories
describing the system’s operation.

… the practical reality with which AI people struggle in their
work is not just “the world”, considered as something
objective and external to the research. It is much more
complicated than this, a hybrid of physical reality and
discursive construction. … Technical tradition consists
largely of intuitions, slogans, and lore about these hybrids,
which AI people call “techniques”, “methods”, and
“approaches”; and technical progress consists largely in the
growth and transformation of this body of esoteric tradition.
[2:p. 15]

Different practices (e.g. classical AI, interactionist AI) provide
different affordances for narrating system behavior. For the
classical AI researcher, the discursive construction consists of
ways of talking about “goals”, “plans”, and “knowledge”, while
for the interactionist AI researcher, the discursive construction
consists of ways of talking about “embodiment”, “action”, and
“improvisation”. These discursive constructions are a necessary
part of the functioning of the system.

To understand what is implied in a claim that a given
computer model “works”, one must distinguish between two
senses of “working”. The first, narrow sense, again is
“conforms to spec” – that is, it works if its behavior
conforms to a pregiven formal-mathematical specification. …

the second, broad sense of “working” … depends on specific
words of natural language. As I mentioned at the very
beginning, an AI system is only truly regarded as “working”
when its operation can be narrated in intentional vocabulary,
using words whose meanings go beyond mathematical
structures. When an AI system “works” in this broader sense,
it is clearly a discursive construction, not just a mathematical
fact, and the discursive construction succeeds only if the
community assents. [2:p. 14]

In typical AI research practice, these affordances are often not
consciously acknowledged or manipulated. Rather, they serve as
part of the unconscious background, co-evolving with the
technical practice as a silent but necessary partner in the
research. Systems are spoken of as having “goals” or engaging in
“embodied action”, as if these were primitive, readily detectable
properties, like being blue, or being cold, rather than the hard-
won results of rhetorical construction and debate. But in
Expressive AI practice, these discursive constructions are an
explicitly manipulated resource, an architectural surplus that
makes the architecture not just a bunch of code, but a way of
thinking about the world.

Within the semiotic framework of this chapter, the architectural
surplus (an interpretive surplus on the author side), can be
understood as one or more meta-languages, in which the signs in
system1 (syntagm1) form the content plane, and as one or more
connotative systems, in which signs in the meta-language form
the plane of denotation.

For example, consider joint goals in ABL. The code sign for a
joint goal appears in Figure 5. The sign signifies that a team of
ABL agents will attempt to achieve Goal1(). A meta-language
allows us to talk about and thus operate on these code signs. This
meta-language consists of ordinary language that has been co-
opted into talking about code signs. This meta-language in turn
serves as the plane of denotation for a connotative sign system –
this connotative sign system contains the “spillover” of the co-
opted ordinary language, connotative meanings that escape the
strict meaning of the code signs. In this case, the meta-language
sign for a joint goal connotes the idea of a team of people
working together, with all the non-formalized richness of this
notion. The connotation lifts the code sign out of the
circumscribed meaning provided by the architecture, and into the
more open-ended sign system used to talk about coordinated
human activity in the everyday world. Once lifted into this
connotative system, the author can use the connotative sign
system to think about the human realm of teamwork. But new
signs reached by thinking in the connotative plane can in turn
have signifiers in the meta-language whose signifieds lie back in
the code system. Thus ordinary language, in this case the
ordinary language of human teamwork, becomes a meta-language
for talking about and manipulating a technical system, in this
case the code system for joint goals in ABL. This movement,
from code system, into ordinary language, and back into code
system, creates a circulation of signs that suggests both new ways
of using the architecture and new architectural elaborations, in
this case news ways of using joint goals and new architectural
elaborations for joint goals.

66

Figure 5. Code signs, meta-language, and connotation.

Consider first how the ordinary language system of human
teamwork suggests new ways of using joint goals. In the
everyday human world, we think of people coordinating to
achieve goals they want to achieve; that is, we imagine people
having a positive emotional valence towards a goal. Two people
might team up to hang a picture, or change a tire, but we don’t
picture people teaming up to have a big fight, or teaming up to
accomplish a mugging, with one team member the victim and
one team member the mugger. An author may thus never think of
using joint goals to coordinate a big fight among two agents. But
now imagine that in the connotative plane we start thinking
about teams of movie actors or stage actors. In acting within a
play or movie, human actors often tightly coordinate in the
carrying out of dramatic activity in which the characters strongly
oppose each other, as in, for example, a play in which a marriage
falls apart as years of buried frustrations and misunderstandings
are revealed. Now this gives us the leverage (meta-language) to
imagine using joint goals in Façade to tightly coordinate conflicts
between characters. Ordinary language, used as both the plane of
connotation and as meta-language, is a necessary part of the total
system – it provides the code system with broader meaning and
consequently suggests new ways of manipulating the code
system. Note that this example involves consciously
manipulating and exploring the plane of connotation in order to
reveal a new possibility within the code system. If we were
uncritically wedded to the ordinary language system of
“rationality”, in which people only pursue goals for things they
emotionally desire, then the code system idea of jointly
accomplishing conflict may never arise.

The plane of connotation and meta-language not only suggests
ways of using the code system (syntagm1), but modifications and
elaborations of the architecture itself (system1). Continuing with
the joint goal example, consider the control of activity within a
joint goal. In ordinary language, when we imagine team members
accomplishing a task together, we often imagine the decision of
what step to do next being distributed among the team members.
Certainly there are hierarchical situations in which a team leader
is responsible for managing the teams, but many teamwork
situations are more collaborative and decentralized. Now
consider the initiation of joint goals in the code system. When
one member of a team initiates the joint goal, the other members
of the team, on successful entry into the joint goal, spawn the
goal at the root of their active behavior tree (ABT). Only the
joint goal initiator has the goal deeper within the ABT. If other
members of the team initiate joint subgoals in the service of the
original joint goal, these joint subgoals will appear at the original
initiator’s ABT root. This is a bit counter-intuitive, given that
within the ABT subgoals are normally children of the goal (via a

behavior) they are in service to. But strictly at the code level
there is nothing wrong with this arrangement. However, consider
how the ABT is connotatively read or interpreted. The ABT
captures the structure of an agent’s thoughts, its mind. It is not
just a bookkeeping mechanism controlling execution, but a
representation of the agent’s activity. Reflective processes (meta-
behaviors) may treat the ABT directly as a representation. But
even without reflection, the mechanisms for success and failure
propagation, the many annotations that modify success and
failure propagation, and continuously monitored conditions, all
work together to support the reading of the ABT as a
representation. When a goal appears deep in the ABT, it is
enmeshed in more complex patterns of activity than a goal
shallower in the ABT – ABT depth becomes a proxy measure for
the complexity of the agent. With this reading of the ABT,
combined with the ordinary language model of teamwork, the
default joint goal initiation mechanism is seen as lacking.
Initiated joint goals, since they are always at the root of the ABT,
aren’t able to fully participate in complex patterns of activity.
This is particularly problematic for “flat” teams, in which all
team members equally participate in the control logic for the
team, and thus both initiate and respond to requests to enter joint
goals. This circulation between readings of the ABT, code signs
for joint goals, and readings of these code signs, suggests an
architectural modification supporting the initiation of joint goals
anywhere in the ABT.

Authorial affordance consists not just of the code system
relationship that syntagm1 simultaneously implements system2
and describes syntagm2, but also of the rhetorical relationship
that syntagm1 is readable and handleable by interpretive systems
and meta-languages. An architecture is a machine to think with.
The complex circulation between code signs and the interpretive
framework provides authors with both resistance (some things
will appear hard or impossible) and opportunity (new ideas
arise). Thinking with the architecture suggests new audience
experiences, creating a feedback loop between authorial intention
and the details of the total system (code + rhetoric). But
establishing this interpretive framework, the plane of connotation
and meta-language, takes real work. It is the outcome of a
practice that simultaneously tries to articulate the code machine
and the ways of reading it and talking about it. In contrast, a
practice that views the system as a hack, as a means to an end,
will likely construct systems with poor authorial affordances,
lacking both the code system relationships and rich rhetorical
frameworks necessary to enable new audience experiences.

4.3 Idioms
Idioms are ways of using an architecture, conventional structures
for the authoring of syntagm1. Idioms arise through the interplay
of the architecture and its interpretive frameworks. In a sense,
the idioms actually cash out the interpretive framework, being
the place where interpretation and code meet. This is why idioms
are so important for truly understanding an architectural system.
An abstract description of a code system will make use of all
kinds of ordinary language words, such as “plan”, or “embodied
activity”, or “learning”, but understanding the particular
entanglement of rhetoric and code that is the total system
requires examining the detailed circulation between these

 human
teamwork

potential
execution of

joint goal

joint goal
Goal1()

“ joint goal”

sign circulation

code sign

connotation

67

language signs and code signs. Idioms are the place where this
detailed circulation occurs.

As idioms become larger and more diffuse, they begin restricting
the circulation between code and rhetoric. The code signs
become large and diffuse, making the connotative lifting and
meta-language handling difficult. Idioms can thus reveal
breakdowns in the total system, conceptual domains in which the
circulation between rhetoric and code are restricted. The
breakdowns suggest architectural opportunities, modifications of
the architecture that enable new idioms and simultaneously re-
articulate the interpretive sign systems, providing new ways of
talking and thinking about the code system. Systems built
without an explicit concern for authorial affordances are likely to
be all idiom, and thus severely restrict the circulation between
rhetoric and code. This would be the case, for example, if Façade
was written as a giant program in a standard programming
language such as C. The only code signs at our disposal would be
the rather low-level signs provided by C. Everything else would
be idiom, with large chunks of C code having only a diffuse
relationship to signs of the audience experience (syntagm2) and
to connotative and meta-languages. This extreme case of the code
system being nothing but idiom, code piled on code, provides
poor authorial affordances, making it difficult to think about,
discover, and express, new conceptual frameworks and new
audience experiences.

4.4 Generality of the Doubled Machine
The use of a structural semiotic terminology in this chapter, with
the focus on “sign systems”, “languages”, “connotation” and so
forth, may lead a reader to conclude that the analysis of
affordances in terms of doubled machines of rhetoric and code is
only useful for classical AI systems, with their explicit focus on
symbolic knowledge. The analysis applies much more broadly
than this, however, to any AI or ALife practice. All such
practices make use of a rich entanglement between technical
systems and ways of talking and thinking about the technical
system. Consider a robot built along the lines of subsumption
architecture [6], in which finite state machines mediate rather
directly between sensory input and motor actuation. The finite
state machines may in fact be implemented entirely in hardware,
rather than as code in a general purpose micro-controller. Yet
there is a still a “code machine” that participates in complex
discursive constructions. Wires bearing voltages are in no less
need of interpretation than fragments of textual code, and
participate in the same sign system relationships that support
interpretive and authorial affordances.

The focus in this chapter on authorship may similarly lead a
reader to conclude that this analysis is not relevant to machine
learning. But again, the methods of machine learning consist of a
technical/rhetorical system, one organized around the “learning”
or “discovering” of “patterns” in “raw data”. But, of course,
human authors select the primitive features, define the
representations of hypotheses or distributions, define the search
methods employed to tune parameters, and design how particular
machine learning methods are embedded in larger architectures.
For example, Office Plant #1 makes use of the
technical/rhetorical system of text learning as part of an
architecture supporting the creation of a non-human companion
responding to email activity.

5. Conclusion
This paper develops authorial and interpretive affordances as
central terms in the hybrid practice of Expressive AI. The
relationship between these two affordances shows how
Expressive AI is simultaneously concerned with art’s creation of
meaningful experience (and the consequent focus on
interpretation of the art object), and AI’s construction of
machines that can be understood as behaving intelligently (and
the consequent focus on the structures, properties and processes
of these machines). Structuralist semiotics, through its concern
with sign systems and the relationships between systems,
provides a common ground in which both the artwork as
experienced by the audience and the construction of machines as
experienced by the author can be seen as instances of sign
systems – this provides the framework for a more detailed
analysis of the relationship between these affordances.

As an analytical framework, structuralist semiotics has its limits.
Arising from the tradition of Sassure, its view of the world as a
meshwork of language systems whose rules can be analyzed has
trouble accounting for the actual processes involved in the use
and production of signs. Some work in the analysis of
computational media has fruitfully made use of Peirceian
semiotics, whose sign concept includes a notion of meaning more
amenable to process (e.g.[1, 7:chapter 4]). Further analysis of the
negotiation of meaning in technical systems could fruitfully make
use of ethnographic and phenomenological frameworks.
However, the structuralist analysis here, with its focus on the
relationships between sign systems, goes a long way towards
understanding both how and why Expressive AI is
simultaneously concerned with the code system and audience
interpretation.

6. REFERENCES
[1] Anderson, P. B., Holmqvist, B., Jensen, J. F. 1993. The

Computer as Medium. Cambridge: The Cambridge
University Press.

[2] Agre, P. 1997. Computation and Human Experience.
Cambridge, UK: Cambridge University Press.

[3] Barthes, R. 1972. Mythologies. (Trans: Annette Lavers).
New York: Hill & Wang. Translation of Mythologies, first
published in 1957.

[4] Barthes, R. 1967. Elements of Semiology. (Trans: Annette
Lavers & Colin Smith). New York: Hill & Wang.
Translation of Eléments de Sémiologie, first published
1964.

[5] Boehlen, M., and Mateas, M. 1998. Office Plant #1:
Intimate space and contemplative entertainment. Leonardo,
Volume 31 Number 5: 345-348.

[6] Brooks, R. 1986. A robust layered control system for a
mobile robot. IEEE Journal of Robotics and Automation,
RA-2(1).

[7] Frasca, G. 2001. Videogames of the Oppressed: Videogames
as a Means for Critical Thinking and Debate. Masters
Thesis, Interactive Design and Technology Program,
Georgia Institute of Technology. Available at:
www.ludology.org.

68

[8] Gibson, J. 1979. The ecological approach to human
perception. Boston: Houghton Mifflin.

[9] Hjelmslev, L. 1961. Prolegomena to a Theory of Language
(trans. Francis J Whitfield). Madison: University of
Wisconsin Press. Translation of Omkring Sprogteoriens
Grundlæggelse, first published in 1943.

[10] Mateas, M. 2002. Interactive Drama, Art and Artificial
Intelligence. Ph.D. Thesis, Computer Science Department,
Carnegie Mellon University. CMU-CS-02-206.

[11] Mateas, M. 2001. Expressive AI. Leonardo: Journal of the
International Society for Arts, Sciences, and Technology, 34
(2), 147-153.

[12] Mateas, M. and Stern, A. 2003. Integrating Plot, Character
and Natural Language Processing in the Interactive Drama
Façade. Proceedings of Technology for Interactive Digital
Storytelling and Entertainment (TIDSE) 2003.

[13] Mateas, M. and Stern, A. 2000. Towards Integrating Plot
and Character for Interactive Drama. In Working notes of
the Social Intelligent Agents: The Human in the Loop
Symposium. AAAI Fall Symposium Series. Menlo Park,
CA.: AAAI Press.

[14] Mateas, M., Vanouse, P., and Domike S. 2000. Generation
of Ideologically-Biased Historical Documentaries. In
Proceedings of AAAI 2000. Austin, TX, pp. 236-242.

[15] Newell, A. 1982. The Knowledge Level. Artificial
Intelligence 18: 87-127.

[16] Newell, A. and Simon, H. 1976. Computer science as
empirical enquiry: symbols and search. Communications of
the ACM, 19:113--126.

[17] Norman, D. 1988. The Design of Everyday Things. New
York: Doubleday.

[18] Penny, S. 2000. Agents as Artworks and Agent Design as
Artistic Practice. In K. Dautenhahn (Ed.), Human Cognition
and Social Agent Technology. Amsterdam: John Benjamins.

[19] Saussure, F. 1974. Course in General Linguistics. London:
Fontana. Translation of Cours de linguistique generale, first
published in 1916.

[20] Turing, A. 1950a. Computing machinery and intelligence.
Mind 59:433-60.

