
ap - fm01
martin howse

ap

studio 22,38-40 upper clapton rd
london e5 8bq uk

m@1010.co.uk

jonathan kemp

ap

studio 22, 38-40 upper clapton rd
london e5 8bq uk

j@1010.co.uk

ABSTRACT
This paper examines a new discursive space which has been
exposed by radical software art through the heuristic possibilities
opened up by software abstraction.

Keywords
Machinic abstraction, environmental coding, endodata, software
art, auto-destructive, distributed systems, reconfigurable
computing

1. INTRODUCTION
fm01 is speculative software: that is it both explores the
potentiality of possible programming thereby creating transversal
connections between data/code, machines and networks, and
software  that reflexively addresses/investigates and finally
reinvents itself as software by its own means (it is a bastard
ontology): presenting a release of technology from the ontological
idea of its usage, and permit its own ontological structuring  as
unknowable - placing it in the unknowable Kantian realm of
practical reason (like infinity, god, morality, things in themselves)
and outside of the operation of pure reason, (a sphere of necessity,
of laws of cause and effect,  syllogism, the law of
identity/singularity, of the excluded middle); and evading the
logic of the universal/particular coupling. so for us, the
ontogenesis of fm01, isn't to be found in the retelling of a
teleological story of image processing culminating in digitization
or whatever (just as the immune system doesn't orientate itself to
the survival of its host) and as  fm01 doesn't take images as
carriers of experiences and meanings, we are not interested or
know where it sits in the context of expanded film.

instead fm01 attempts to confront between what man regards as
being possible [function + value] and what machines present as
feasible [in potentia]. technologies are permanently shifting this
relation between the possible (potential) and the feasible
(functional) and where the construct of the real constitutes such a
"negotiation" between the potential and the functional, being
constantly reformulated.

fm01 [also] attempts to ask the radical question of how data can
be represented for the machinic without the supervenience of
meta-data or the demand for the purely functional impacting on
abstraction.

fm01 as investigation centres around the domains of:

1. new operational zones created by machinic ontologies
[lying on the plane of fascism, outside humanism,
because it demands a space outside the operation of
pure reason in to the realm of practical reason (things in
themselves)].

2. the specific exposition of a radical space for code art
[ denying the trope that if code defines how data gets
handled on a technical level, then meta-code [like belief
systems, ideologies and organizing principles] is the
philosophically relevant level ]

subthemes in relation to these two domains are: a) the decoding
and recoding of data under non species dependent symbolic orders
b) the form space of code and environment and its autopoeitic
engineering. so the relationship we will present between image
and generation is not a reenactment of the anthropological
semantics of the human eye but is part of an integrative poeisis of
processing between orders as extant between geology, plants,
machines and humans. the making of images is not a return to
imagination of iconic culture but the move to calculation +
computation [vilem flusser], the morphospace of numerology.
although we're used to being on the winning side of the image an
image comes full circle when it is revealed by its own machinic
underpinning.

2. ENVIRONMENT
in presenting the fm01 project, there is an underlying assumption
that the audience is familiar with some current issues and
practices in contemporary software art/cultural practice including
digitally expanded cinema. a general synopsis of current
paradigmatic thought around issues specifically of digital cinema
may be found in Peter Weibel/Jeffrey Shaw's accompanying book
for ZKM's 2002/3 Future Cinema exhibition[1], where they

write that, for example, “the biggest challenge for the digitally
extended cinema is the conception and design of new narrative
techniques that allow the interactive and emergent features of that
medium to be fulfillingly embodied”[1], and outline three
overlapping areas of recent praxis:

1. modular structures of narrative content which allow
indeterminate numbers of permutations or parallelisms
(eg Lev Manovich’s “soft cinema”; Jon Jost; Eija- Lisa
Atthila; Raymond Tomin’s AVRA software; Jennifer +
Kevin McCoy; Marc Lafia’s Max/Msp based “variable
montage”).

2. algorithmic generation of narrative/mnemonic
sequences/ markers that could be modulated by the user
(eg. Martin Reinhart + Virgil Widrich’s “tx transform”;
Marnix de Nijs “run, motherfucker, run!”; the work of
George Legrady).

3. digitally extended cinema inhabited by audience who
become immersed agents and protagonists in its
narrative development (eg. Jeffrey Shaw; Michael
Naimark; Margarete Jahrmann + Max Mosswitzer’s
“rgani-engine-toolz”).



Future Cinema was cast as a show where “the medium is the
message” yet was situated in the familiar terrain of the hegemony
of the species, the subjugation of machinic cinema embodiments
to the plateau of pure reason, and the enslavement of technology
to an ontology of relational functionalism. It is paradoxical that
Future Cinema’s seeming activism is consistent with a series of
static shots from a fixed point of view, between man and machine,
as a homogenous relationship [the great Gutenberg program].

3. CODE
there’s a lot of data flying about that isn’t species dependent for
its encoding, decoding or recoding, and in many ways we are no
longer the sole traders in the realm of the symbolic as a species:
for example, within the interaction of human text with machine
coding, language is not the exclusive domain of human thought
but also that of the internal logic of computers. Fm01 is an
attempt within this context to offer a total software environment
for the semi-automated production, scripting and editing of
endless cinema outside the humanist realm of meta-data. Fm01 is
not conceived as an editing engine for the manipulation of generic
clips (in an expanding database of all possible scenes rganizatio
according to a huge number of elements and relations) but rather
offers an enmeshing within script, data streams and environment
[WHERE ENVIRONMENT=CODE=ENVIRONMENT IN
BEAUTIFUL TRAJECTORIES]. An environment of trajectorial
machine nodes - from environment to language these machinic
nodes are the environment - consisting of trajectories, macros-
functions, relations, levels, scenes, scripts, machine-nodes.

Gdapp (generic data application) commenced coding in late 2003:
the idea being that a pure lisp-coded prototype fm01 would meet
with the arc described by the nodal, distributed gdapp experiment.
An intensely nodal, modular, environmental, self-referencing
system which builds on ap02 vm model but extending and
multiplying this model/ dissecting it also into a nodal/ geologic
strata model. Gdapp describes a globular/dynamic changing node
structure of connections, of flow and instructions - a total
environment, an operating system which dynamically re-codes
itself, is recoded in operation. Layers of abstraction as
environment: consisting of a base layer which mobile, almost viral
code nodes sit and work upon and an open exchange as opposed
to a protective, secure OS model. Gdapp codes promiscuity and
open discovery rather than static upload/download or I/O
structuring. Gdapp codes through a nodal model: nodes run/write
code/data, nodes run other nodes, nodes link other nodes, nodes
reflect macro linkages or embed code and linkages within neural
model of linkage excitation.

The technologies of vision/representation have been driven by a
indexical linking between reality and representation [image and its
physical rganiza object] and we are compelled to locate [veracity]
within the technologised image [the history of film and relation
between celluloid/chemicals/light/scene]. If images have been
conceived of only for human species then images that are
machine-assisted or automated seeing render redundant imaging
as an attempt to reconcile this contradiction, the indexical idea.

Digital images are not immaterial [as some think through the
breakage of indexical link]

“hardware looks like programs: it is a configuration. Hence
programs, hardware (configurations) and data have the same
nature.” [2]

descriptions of cell matrix architecture (Macias 1999) well match
the gdapp engineering philosophy. The cell matrix is internally
configured by exchanging configuration data with its neighbours

“evolvable computing and some modern systems do not share
computational scenario of a standard Turing machine and cannot
be simulated on Turing machines.” [2] thus interactivity and
infinity come into play with consequences for any theory of
abstraction. That it is not a field of equivalence - here time enters
the computational equation.

“at each time point evolvable devices have a finite description -
however when one observes their computation in time they
represent infinite sequences of reactive devices computing non-
uniformly”[2]

“evolvable computing is beyond scope of an ordinary Turing
machine. It does not violate the Church-Turing thesis because this
thesis deals with a slightly different class of computations
corresponding to the concept of algorithm. This class of
computations is not typical for contemporary computational
systems” [2]

the advent of the digital image is thus freed from its material
support and mobilizes it through networks and recoded as
mathematical information (bits, code) that allows it (the bit-real)
to be recomposed infinitely and to flow indefinably as data.

Complex data cannot be comprehended by human reading (too
slow). Data is rendered /abridged by images (like the celluloid
film strip of Conrad Zuse holding both image/code and data).
Digital calculation beyond the individual subject refers neither to
the differential symbolic order represented on the screen nor to a
world outside this screen (physical reality behind the screen is
state and current only); the digital machinery retreats into total
abstraction and is catachretic, not metaphoric, a baroque violence
rendered to the potentia of the machinic phylum.

So what would be in this philosophy of images. Software routines
and their non-traceable/path dependent images are a realm/
environment of data/code [in effect the break between the material
support of digital imagery, the break between the indexical link].
And so in fm01 a relational, nodal language of connection will be
formulated to descend through levels of scene, shot and frame.
Instruction sets (which refer only to trajectories and grammars)
are dependent on context/environment but offer the same
functionality [non-functionality] across all flattened levels from
pixels to major trajectories, from major conceptual conceits and
rganizations of nodes to a single script particle.

Fm01 is running invisible code: its self-organising is ceaseless
and in contradistinction is environmentally mobile: distributed
and polyvalent. Code is an environment of subsystems in search
of form or pattern, the orphaned bits without superstructure where
nothing corresponds to anything inside nor outside the
machineware that applies it. Nothing more than the autonomous
movements of data within the clock of the machine - ways of
doing things become situated within object orientated fields of
influence (marked by a level of analysis, meta/o-nymed) (eg. The
micro influenced by the macro, or a “case of” where a process is
named) and we see in one sense a blind text/residue stratum ie.
Electronic images are effects of a surface right from the start
where the surface still appears as material of an object and as
intensity of a pixel.



4. ENGINEERING PHILOSOPHY
textural lisp work with an extant written script (a description, a
specification for fm01 almost) will describe a trajectory and meet
with the arc of gdapp to constitute the first full version of fm01.
this textual work (operating on text as stream rather than as file -
text as particle physics) is towards creating a compiler/interpreter
which actively runs that script. Gdapp is concerned with mobile
code nodes which run and enact on data - both approaches lead to
fm01 - runs the script creating new text or film - runs that script
which acts on and suggests data sets - active across data sets and
is inside-embedded within/as data sets.

Components outside an object model - trajectorised components
include script, node, language implying an interpreter and
particles with velocity and open destination. To begin with the
script:

script as making evident of word-background/that-which-is-
written within script as it stands - towards what-will-be filmed but
without discarding the script. Background material includes data
such as how it was written - how it is to be filmed (this is not
meta-data but the being-script). Within such a landscape -relation
the issue of vectorisation or trajectory is important.

Background/script (film script) stands in same relation to film
(filmed) as program to execution - background as revelation of
code and script rewriting film rewriting script.

Scene as node which can change/merge/enact upon other
nodes/scenes. Functional data/code/scene nodes collaborate/
change each other - for example image analysis
nodes/compression nodes

script as node, node as mobile, node as cross-level functional and
able to negotiate, coerce and encompass trajectories of nodes,
node as interpreter and interpreted ongoing, node as exchange
with nodes and collaboration.

Back-foreground relation as question of interpretation (and
context =environment) and the ability to alter-construct node
trajectories. Nodes define a language which can be shared or
argued over - misconceived. Fm01 is thus the description of a
language. Language is described by the script. The script is
defined in terms of mechanisms with the node as this mechanism
which functions in/or constructing/constructs language.

Computer language (created on top of another and bootstrapping)
describing an environment which is node, script, interpreter and
trajectory (distributed) at the same time.  Vectorisation of script
and image - as image and in script across combinatorial senses of
pages, scenes, shots and also within image and scene (eg.
Concentric studio spaces and clues=trajectories) as well as being
embedded in components script also defines trajectory (networked
and across nodes) of/for software components

instructions or tokens (to use such a word?) are dependent on
context - but offering the same functionality across all flattened
levels of what could be seen as high and low levels - of pixels and
major trajectories (some functions dependent on context =
environment ). trajectory of node-particle possesses speed and
crosses levels as dictated. node is particle, relation and change of
space of that particle.

to describe the meeting of both arcs: the co-evolution of cell data-
code interpreter elements in lisp (eg.  evolution of edge detection).
co-evolving mobile modules explore and exchange different
functionality and data/code whilst working on both script stream
I/O and film stream I/O: simply to replace fixed database software
with mobile nodes and changing code/data streams across parallel
architectures. script-data-code IS these modules (how module is
defined) thus software is really the interpreter or some sort of
bootstrap of language and interpreter. nodes are the data, are the
software - kein outside, kein addressing, purely trajectorial nodes
impacting on an environment which is solely of nodes, of strata.
fm01 has purely generic nodes which are just assemblages
according to no function - function defined by relations and
trajectory - interior (invisible) machinic function.

5. REFERENCES
1. Shaw, J, and Weibel, P. Future Cinema. MIT Press.

2. Sekanina, L. Evolvable computing by means of
evolvable components. Natural Computing 00 1-31,
2004


